1,041 research outputs found

    Automated group assignment in large phylogenetic trees using GRUNT: GRouping, Ungrouping, Naming Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate taxonomy is best maintained if species are arranged as hierarchical groups in phylogenetic trees. This is especially important as trees grow larger as a consequence of a rapidly expanding sequence database. Hierarchical group names are typically manually assigned in trees, an approach that becomes unfeasible for very large topologies.</p> <p>Results</p> <p>We have developed an automated iterative procedure for delineating stable (monophyletic) hierarchical groups to large (or small) trees and naming those groups according to a set of sequentially applied rules. In addition, we have created an associated ungrouping tool for removing existing groups that do not meet user-defined criteria (such as monophyly). The procedure is implemented in a program called GRUNT (GRouping, Ungrouping, Naming Tool) and has been applied to the current release of the Greengenes (Hugenholtz) 16S rRNA gene taxonomy comprising more than 130,000 taxa.</p> <p>Conclusion</p> <p>GRUNT will facilitate researchers requiring comprehensive hierarchical grouping of large tree topologies in, for example, database curation, microarray design and pangenome assignments. The application is available at the greengenes website <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p

    Gene Context Analysis in the Integrated Microbial Genomes (IMG) Data Management System

    Get PDF
    Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov

    The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Get PDF
    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr

    The integrated microbial genomes (IMG) system

    Get PDF
    The integrated microbial genomes (IMG) system is a new data management and analysis platform for microbial genomes provided by the Joint Genome Institute (JGI). IMG contains both draft and complete JGI genomes integrated with other publicly available microbial genomes of all three domains of life. IMG provides tools and viewers for analyzing genomes, genes and functions, individually or in a comparative context. IMG allows users to focus their analysis on subsets of genes and genomes of interest and to save the results of their analysis. IMG is available at

    IMG/M: the integrated metagenome data management and comparative analysis system

    Get PDF
    The integrated microbial genomes and metagenomes (IMG/M) system provides support for comparative analysis of microbial community aggregate genomes (metagenomes) in a comprehensive integrated context. IMG/M integrates metagenome data sets with isolate microbial genomes from the IMG system. IMG/M’s data content and analytical capabilities have been extended through regular updates since its first release in 2007. IMG/M is available at http://img.jgi.doe.gov/m. A companion IMG/M systems provide support for annotation and expert review of unpublished metagenomic data sets (IMG/M ER: http://img.jgi.doe.gov/mer)

    Draft Genome Sequences of 10 Strains of the Genus Exiguobacterium

    Get PDF
    High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes

    Genome Analysis of the Anaerobic Thermohalophilic Bacterium Halothermothrix orenii

    Get PDF
    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations
    corecore